Few-shot Learning for Multi-label Intent Detection

نویسندگان

چکیده

In this paper, we study the few-shot multi-label classification for user intent detection. For detection, state-of-the-art work estimates label-instance relevance scores and uses a threshold to select multiple associated labels. To determine appropriate thresholds with only few examples, first learn universal thresholding experience on data-rich domains, then adapt certain domains calibration based nonparametric learning. better calculation of score, introduce label name embedding as anchor points in representation space, which refines representations different classes be well-separated from each other. Experiments two datasets show that proposed model significantly outperforms strong baselines both one-shot five-shot settings.

منابع مشابه

Transductive Multi-label Zero-shot Learning

Zero-shot learning has received increasing interest as a means to alleviate the often prohibitive expense of annotating training data for large scale recognition problems. These methods have achieved great success via learning intermediate semantic representations in the form of attributes and more recently, semantic word vectors. However, they have thus far been constrained to the single-label...

متن کامل

Few-shot Object Detection

In this paper, we study object detection using a large pool of unlabeled images and only a few labeled images per category, named “few-shot object detection”. The key challenge consists in generating trustworthy training samples as many as possible from the pool. Using few training examples as seeds, our method iterates between model training and high-confidence sample selection. In training, e...

متن کامل

Few-shot Learning

Though deep neural networks have shown great success in the large data domain, they generally perform poorly on few-shot learning tasks, where a classifier has to quickly generalize after seeing very few examples from each class. The general belief is that gradient-based optimization in high capacity classifiers requires many iterative steps over many examples to perform well. Here, we propose ...

متن کامل

Transductive Multi-class and Multi-label Zero-shot Learning

Recently, zero-shot learning (ZSL) has received increasing interest. The key idea underpinning existing ZSL approaches is to exploit knowledge transfer via an intermediate-level semantic representation which is assumed to be shared between the auxiliary/source dataset and the target/test dataset and re-used as a bridge between the source and target domains for knowledge transfer. The semantic r...

متن کامل

Prototypical Networks for Few-shot Learning

A recent approach to few-shot classification called matching networks has demonstrated the benefits of coupling metric learning with a training procedure that mimics test. This approach relies on an attention scheme that forms a distribution over all points in the support set, scaling poorly with its size. We propose a more streamlined approach, prototypical networks, that learns a metric space...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2021

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v35i14.17541